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Abstract. In this paper we describe a heuristic approach to the problem of 
calculating the algorithmic information of message m by estimating 
Kolmogorov complexity. This is achieved by defining a basic element of 
information which we call a metasymbol. We show that when m is expressed as 
an ensemble (which we call M) of metasymbols it complies with the minimum 
message length principle. Therefore, M is the shortest way of encoding m and 
approaches Kolmogorov�s bound. We discuss approaches to the problem of 
finding the best set of metasymbols using AI techniques. 

1 Introduction 

Information, in the classical theory, is defined as a function of the probability of 
appearance of a symbol Si at one end of a communication channel. If the Si are 
statistically independent, the information contained in a message is equal to the sum 
of the information of every one of its symbols, which is intuitively satisfactory. 
However, in spite of its simplicity, we must notice that we ignore the meaning of a 
message and focus only in communicating it between a transmitter (tx) and a receiver 
(rx) under the assumption that the universe of possible messages is known both to tx 
and rx. This notion of information is a measure of one�s freedom when selecting a 
message. Given the choice of sending the full contents of this paper or the phrase 
�Let�s eat� the information concerned is, precisely, one bit. 

Another intuitive way to look at the problem is to consider that the information in a 
finite string is the number of bits of the shortest self-contained program that computes 
the string and terminates. Thus, a long sequence of n 0�s (for n, say, equal to 10,000) 
contains little information because a program of about log2(n) bits outputs it. 
Furthermore, it can be shown that all reasonable choices of programming languages 
lead to quantification of the amount of absolute information in individual objects that 
is invariant up to an additive constant. We call this quantity the Kolmogorov 
complexity (K-complexity) of the object. If an object contains regularities, then it has 
a shorter description than itself. We call such object compressible. A consequence of 
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this is that a truly random sequence cannot be expressed in a shorter string than the 
enumeration of its constituents and, conversely, that a string compressed to its utmost 
is, for all practical purposes, random and that its length is a strict measure of its K-
complexity. This second fact leads us to conclude that an algorithm achieving highly 
efficient compression will allow us to measure the K-complexity of an object; a fact 
which has been overlooked in the past. 

The crux of the matter lies in defining �highly efficient compression� (HEC). In 
what follows we discuss a representation which provides an operative definition of 
HEC. It relies on the discovery of the so-called metasymbols and their proper 
selection. We have already proven that both problems are NP-complete and, 
therefore, that their practical solution must depend on heuristics. We discuss a set of 
algorithms which approach theoretical bounds and, therefore, offer a practical tool for 
the calculation of K-complexity. In part 2 we discuss the representation, in part 3 we 
discuss the algorithms, in part 4 we offer our conclusions. 

2 Representation  

Our method relies on the analysis of m in order to identify a set of the underlying 
patterns (which we call metasymbols). In what follows we describe one possible 
representation. In order to do this we must clearly define a metasymbol and the 
associated concepts. 

2.1 Definitions 

Metasymbol (Ms). It is a collection of symbols which appears embedded in m. Its 
symbols are not necessarily contiguous (they may show gaps). Its size (number of 
symbols) is, in general, different from the sizes of other Ms. In general, we expect that 
Msi appears more than once in m. The i-th copy of a Ms in m is called its i-th 
instance.  

Position of Msi. It is defined by the i-th offset (the number of symbols intervening 
between the first symbol of Msi and the first symbol of Msi+1). By convention the 
offset of the Ms1 is relative to the first symbol found in m. The position of all the 
symbols in Msi is completely specified by these offsets. Since the structure of the Ms 
is fixed, when we specify the offset of Ms we implicitly specify the position of all of 
its symbols.  

Gap. It is the number of unspecified symbols between two contiguous symbols in a 
Ms. There may be S symbols (not necessarily different) in Msi; hence, there are S-1 
gaps in it. By the structure of a Ms we mean the enumeration of its gaps. 

Content of a metasymbol. It is the enumeration of the values of all the symbols in 
the Ms. In general, m is not fully covered by all instances of the different Ms, i.e. 
there are symbols which are not accounted for by a collection of Ms. The enumeration 
of those symbols not covered in m is called the filler. 
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2.2 The Method  

In general, the steps to express m as a collection of Ms [1] are: 1) Find an adequate set 
of Ms, 2) Express m as a sequence of Ms, 3) Describe the position, structure and 
contents of each of the Ms, 4) Describe the contents of the filler. 

In what follows we illustrate the representation method with a hypothetical m 
arranged in a 16X8 matrix (see figure 1). In m we may identify 5 metasymbols. The 
first metasymbol (Ms1) consists of 12 symbols (see figure 2), and it appears 3 times. 
The positions of its first symbol in the first, second and third instances are (1,1); (7,3) 
and (9,4). To identify the position of the next instances of the Ms1 refer to figure 1.   

 

 
Fig. 1. Message arranged in a 16X8 matrix 

 
Fig. 2. First instance of Ms1 

Ms2 consists of 8 symbols and it appears 2 times. Figure 3 shows its first instance 
with initial position at (1,3). The second instance appears at (15,4). 

Ms3 consists of 3 symbols and it appears 9 times. Its first instance is shown in 
figure 4. Observe that its initial position is (15,1). For instances 2 to 9 their initial 
positions are (2,2), (3,2), (6,2), (13,2), (8,3), (5,6), (6,6) and (14,6) respectively (refer 
to figure 1). 

Ms4 consists of 2 symbols and it appears 7 times. In figure 4 is shown its first 
instance and its position at (4,1). For instances 2 to 7 its positions are (7,1), (9,1), 
(16,1), (1,7), (9,7) and (16,7) respectively (refer to figure 1). 

Ms5 consists of 3 symbols and it appears 2 times. Figure 4 shows its first instance 
with positions at (15,6) and (3,7). 

 

 
Fig. 3. First instance of Ms2 

 
Fig. 4. First instances of Ms3, Ms4 and Ms5 

The symbols of all instances of Msi, i=1, �, 5 account for 99 of the 128 symbols 
in m (77.34%). The rest of the symbols follow no pattern and make up the filler.  

For clarity, we assign the Greek letters α, β, γ, δ and ε to Ms1, ..., Ms5 respectively; 
then m = α δ δ δ γ δ γ γ γ γ β α γ α β γ γ γ ε δ ε δ δ. However, without an explicit 
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definition of the position, structure and contents of the various Ms the metasymbolic 
expression of the message is meaningless. Therefore, we proceed as follows. 

1) We describe the positions of the instances of the metasymbols. In the message 
this corresponds to the sequence: 0 2 2 1 5 0 1 0 2 6 3 5 0 16 5 21 0 7 0 1 1 5 6. Every 
number in the sequence represents the distance between the i-th and (i+1)-th Ms. In 
m, Ms1 starts on the position of the first symbol (1,1); then the first instance of Ms4 is 
two symbols away from Ms1. The second instance of Ms4 appears 2 symbols away 
from its first instance. Likewise, the first instance of Ms3 is 5 symbols away from the 
second instance of Ms4, and so on. 

2) We define the structure of all the Ms as a sequence of gaps, one for every Ms. 
Since the symbols are unknown, code �0� is reserved to indicate the end of the 
structure of a Ms. The structure of Msi is, thus, a collection of gaps plus a �0�. 
Furthermore, since it is possible to have a gap of size 0, every gap is encoded as its 
actual size +1. As an example, the structure of Ms1 is specified by the sequence: 4 3 6 
7 6 1 9 5 8 3 9 0. The gap between S1 and S2 is 3 (4-1), the gap between symbols S2 
and S3 is 2 (3-1), and so on.  

3) We proceed to define the contents of every metasymbol. The contents of the Ms 
in m are defined as follows. Ms1: { MEVDEDNIMYHT} ; Ms2: {HDQSHDIL} ; 
Ms3:{ RQK} ;  Ms4:{ QA} ;  Ms5 :{ HQG} . 

At this point we have defined all necessary elements: order, position, structure and 
contents, for every Ms in m. However, as stated, there are symbols which are not 
accounted for by the collection of Ms defined. However, the exact positions of all 
undefined symbols in m are, at this point, known. 

4) We enumerate the contents of undefined localities to complete the cover. The 
following sequence is the filler of m:{ SMTHFRKAQKFTHDIKKAEDKSKMEKHAK} . 

Under this representation m�s K-complexity (K) is given by 
K = )iNµ(1 ∑+ + ∑ iNω + ∑+ iS)(γ λ + ∑− iNiSλL  

Where Ni denotes the number of instances of Msi; M = number of different Ms; 
 (M)logµ 2= ; ω =  ]Msoffset  [max.log i2 ; γ =  ]Ms gap [max.log i2 ; λ =  |Ms|log i2 ; 

Si =  )Ms symbols (max. log i2  and L = | m | in bits. 

3 Algorithms 

In the preceding discussion we assumed that the Ms in m are known. As pointed out 
in the introduction, such is not the case in general. In fact, the problem of finding the 
Ms is NP-hard. In what follows we discuss two approaches to the solution. In 3.1 we 
focus on an approach where Ms are determined on-line; in 3.2 we describe an 
alternative where these are determined off-line. We have conducted statistical tests 
which allow us to affirm that both methods approach the Ms set which leads to 
maximum compression. 
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3.1 On-Line Search 

MSIM is a tool for searching metasymbols based on Vasconcelos� Genetic Algorithm 
(VGA)[2]. The VGA uses a population P of N individuals, a temporary population of 
2N individuals, deterministic selection (from the best N individuals) and has two main 
operators: mutation and crossover. Assuming a binary coding of the individuals, 
mutation replaces a bit�s value by its complement with probability Pm. Crossover 
requires two individuals and interchanges their genetic material with probability Pc. 

The off-line algorithm (MSIM) models m  as an array of symbols indexed from 0 
to |m|-1. The individuals of MSIM are permutations of all the |m| indices of the 
message which lie in the interval [0, |m|-1]. Each index is coded in traditional 
weigthed binary and requires  Llog2  bits. We delimit the metasymbols of an 
individual by reading the indices from left to right and looking for an ascending order. 

As an example, in figure 5 we illustrate a possible individual for the hyptothetical 
m �xyazbcdxyez�. 

 
            0 1 3     2 4 5 6 9       7 8 10  
          x y z      a b c d e        x y z 
           Ms1         Ms2           Ms3 

Fig. 5. An individual of VGA in MSIM 

The relation between the first occurrence of a metasymbol and its repeated instances 
is obtained by comparing the contents of the metasymbols as well as their gaps. In the 
example of figure 1, Ms 3 is a repeated instance of Ms 1 because they match their 
contents as well as their gaps. The other symbols make up the filler. The positions of 
all the metasymbols can be determined from the positions of the first symbol of each 
metasymbol. In genetic algorithm�s terminology, the measure of fitness for MSIM is 
K which is to be minimized. 

VGA�s mutation and crossover operations are not directly applicable in 
manipulating the individuals of MSIM because they act on the genotype (binary 
encoding) which may lead to invalid individuals (out of the feasible region), i.e., 
individuals with repeated indices or with indices out of the interval [0, |m|-1]. For this 
reason we redefined the mutation and crossover operators to render them appropriate.  

The mutation operator consists of a permutation of two indices whereas the 
crossover corresponds to PMX [3].  Both of them retain the resulting individuals in 
the feasible region. Figure 6 illustrates this two operators. 

 
Mutation 

A = 0 1 3 2 4 5 6 9 7 8 10 
 

A�= 0 1 3 9 4 5 6 2 7 8 10 
 

Crossover 
A= 9 8 4  |   5 6 7   |  1 3 2 10 
B= 8 7 1  |   2 3 10 |   9 5 4 6 

 
A� = 9 8 4   |  2 3 10 | 1 6 5 7 
B� = 8 10 1  |  5 6 7   | 9 2 4 3 

Fig. 6. Mutation and crossover operator for MSIM 
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MSIM�s representation is slightly different to the one described in section 2.2; it 
encodes the position between the i-th and the j-th symbol corresponding to the next 
repeated instance of the i-th  metasymbol. Here we do not need to explicitly express 
the sequences of the metasymbols since we can group the positions of the α�s, β�s, 
γ�s, δ�s and ε�s, as shown in figure 7. 

 
 
 
 

α  δ  δ  δ  γ  δ  γ  γ  γ  γ  β  α  γ  α  β  γ  γ  γ  ε  δ  ε  δ  δ 
 
                                  

 

Fig. 7. Alternative coding of m 

Hence, instead of the sequence of metasymbols we can indicate their positions as 
follows: 

α: 0, 11, 2; β: 10, 4; γ: 4, 2, 1, 1, 1, 3, 3, 1, 1; δ: 1, 1, 1, 2, 14, 2,1, 1;  ε: 18, 2 
 

The number of bits of the re-expressed m can be calculated by grouping the bits 
required for each metasymbol, thus [ ]∑ ∑−+++= iMiSλLiλ)S(γiNiψK'  

where iψ  is the number of bits required to encode the positions of all the instances of 
the i-th Ms. The term of the first summation represents the number of bits required to 
encode the i-th metasymbol and is denoted by Ai, then 

                              Ai = ii λ)S(γψN ++  
The number of bits used by the symbols of the i-th Ms in m is Bi  and is given by 
                              Bi = ii f|M|  
Notice that, although we have derived two different expressions (K and K�) for 

Kolmogorov complexity we have shown that, in practical applications, both are 
equivalent [4]. In fact, there is an arbitrary number of possible representations and 
they are all computationally equivalent. The latter is interesting in terms of MSIM�s 
implementation. 
We now define the discriminant di as  

di = 
i

i

B
A

 

Any value of di smaller than 1 implies that we may achieve m�s compression and it 
does not depend on the rest of the Ms. Therefore, we can iteratively search for 
metasymbols whenever we are able to find an associated di smaller than 1. Of course, 
we are looking for Ms such that they minimize di. The Ms in the set are encoded as 
individuals of MSIM and introduced to the population via a special operator called the 
catastrophe operator. This operator corresponds, roughly, to forcing a large number 
of mutations on the individuals, hence its name. It relies on the iterative search for Ms 
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with minimum di value and it will never submit individuals in which of K� is larger 
than |m|. 

3.2 Off-Line Search 

In the previous section we have introduced a method that attempts to find an optimal 
subset of patterns as the patterns are found. This on-line approach has the advantage 
that the time used to determine a good subset of patterns, is amortized by the time 
consumed in the pattern discovery procedure. But it has the disadvantage that some 
good patterns can be disregarded. If, at some stage of the algorithm, the frequency and 
order (number of defined symbols) of two patterns are alike then one of these will be 
selected by the algorithm, while the other is dropped even if its potentiality could 
emerge later in the process. 

An alternative approach is to generate a set of frequent patterns without any 
evaluation of its goodness, and then proceed to determine the best subset of patterns 
to build the a posteriori dictionary. Evidently this approach is more expensive than 
the previous one, but the risk that higher performance patterns will be ignored is 
reduced.  

The process implied in the implementation of this approach is divided in two 
phases: 

1. The search for frequent patterns. The result obtained at the end of this 
phase is a set P of frequent patterns. 

2. The search for a subset B ⊆  P (B is assumed as the dictionary or set of 
metasymbols) such that the amount of bits required for the re-expression 
of the m together with the dictionary is minimum. 

Given the kind of patterns we are looking for in m, the problem related to phase 1 
is very complex. All the algorithms reported have an exponential complexity on |m| 
[5]. However if some restrictions are imposed on the frequency and order of the 
patterns, there exist algorithms with better performance [6].  

Concerning phase 2, we have proved that the search for an optimum subset of 
patterns if it is adopted as the dictionary, is an NP-complete problem [7], therefore 
heuristics are needed in order to approximate such subset. 

The optimality of some pattern is given by its frequency and its order: the higher 
the order and frequency, the better is the pattern. But there is a trade-off between 
these two quantities. In one end we have that single symbols are patterns with highest 
frequency and minimum order; on the other we have that the pattern encompassing m 
has maximum order and minimum frequency. Hence, we need to find patterns which 
maximize both quantities simultaneously. Therefore, we require a measure for pattern 
quality including frequency and order. 

The cost to include some pattern in a dictionary is better amortized if such pattern 
appears frequently in m and there is a large amount of symbols covered by all these 
appearances. Therefore, the product of pattern frequency and pattern order, (which we 
call the pattern coverage), can roughly provide us with an estimate the pattern 
contribution. However, it may happen that some symbols covered in one occurrence 
of a pattern overlap with those covered in another. The amount of symbols covered at 
least one time for a pattern is called the effective coverage, which is a more precise 

Practical Estimation of Kolmogorov Complexity using Highly Efficient...                199



measure for the pattern�s quality. The concept of effective coverage, can be 
generalized in the following way: given a set of patterns B, and a pattern p, the 
exclusive coverage of p is the number of symbols in the sample covered at least one 
time by all the occurrences of p, and not already covered by some other pattern in B. 
This is the final criterion we use to evaluate the patterns. 

The second phase of the procedure sketched above is, therefore, accomplished by a 
heuristic based on the concept of exclusive coverage (which is why we have called it 
the coverage-based heuristic). The output of this algorithm may be considered as a 
proposed subset that could be further optimized by using some local optimization 
procedure. This is attempted by two local optimizers which are, actually, two different 
kinds of hill climbers that we will describe below. 

 
The coverage-based heuristic proceeds as follows:  

• Input: A set P of frequent patterns found in a sample S. 
• Output: A subset  D ⊆  P, assumed to be an approximation to the metasymbol 

dictionary. 
1. Let D = ∅ . 
2.  While the total coverage of patterns in D is less than | m | and P has patterns with 

exclusive coverage, respect to D, greater than zero. 
2.1. Chose the pattern p in P with the highest exclusive coverage respect to D. 
2.2. Add p to D, and remove p from P. 

3. Return D as the dictionary. 
 
The resulting dictionary can now be optimized by local search procedures. We 

have defined two of these mechanisms which are applied consecutively. 
● Minimum Step Hill Climber (MSHC). Given the code of the subset of patterns (a 

binary vector of size | P |, where 1 in the i-th position means that the i-th pattern of 
P is included in the subset), the hill climber proceed to flip every bit in the vector. 
Every change is evaluated and, if the size obtained with the change improves the 
previous size, the changed code is the current subset.  

● Minimum Replacement Hill Climber (MRHC). MRHC proceeds to exchange 
systematically, the position of every bit with value 1 with every other position 
whose value is 0.  

Both of these climbers can be executed until no improvement is found or a fixed 
number of evaluations have been performed.  

4 Conclusions 

We have shown that the best metasymbolic re-expression and further post-encoding 
of message m yields the most compact representation of m. This is true provided that 
we are able to find an adequate set of metasymbols in m. Furthermore, since this 
process is lossless, the original information in m remains unaltered. The most 
economic representation of m is possible only when enough information is provided 
in order for the decoder to infer the structure, position and contents of the 
metasymbols. A formalization of these facts may be found in the Invariance Theorem 
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which embodies (most of) the theoretical foundation of K-complexity. We now state 
it without proof (but see [8]). 

 There is a universal partial recursive function (prf) φ 0 for the class of prf�s to 
compute x given y. Formally this says that Cφ 0(x|y) ≤  Cφ (x|y)+ cφ  for all prf�s φ  
and all x and y, where cφ   is a constant depending on φ  but not on x or y. 

For the purposes of this paper this theorem says that we will be able to decode 
message x from its metasymbolic representation y and that φ 0 is the prf (embodying 
our method of representation) allowing us to do so. Usually K-complexity is defined 
in terms of a Universal Turing Machine and its calculation is, in practice, very 
difficult at best. Our representation and the related algorithms are a practical approach 
which simply consists of finding those sets which minimize cφ  and, therefore, 
correspond to the smallest possible constant involved. 

As discussed above, the computational cost of achieving such goal is justifiable as 
long as high order compression methods (other than ours) are not found. 
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