
Practical Estimation of Kolmogorov Complexity using
Highly Efficient Compression Algorithms

Angel Kuri-Morales1, Oscar Herrera2, José Galaviz3, Martha Ortiz-Posadas4

1Departamento de Computación. Instituto Tecnológico Autónomo de México
2Centro de Investigación en Computación. IPN

3Departamento de Matemáticas, Facultad de Ciencias. UNAM
4Laboratorio de Informática Médica. Departamento de Ingeniería Eléctrica.

 Universidad Autónoma Metropolitana Iztapalapa.
akuri@itam.mx

 jose@pateame.fciencias.unam.mx heoscar@yahoo.com posa@xanum.uam.mx

Abstract. In this paper we describe a heuristic approach to the problem of
calculating the algorithmic information of message m by estimating
Kolmogorov complexity. This is achieved by defining a basic element of
information which we call a metasymbol. We show that when m is expressed as
an ensemble (which we call M) of metasymbols it complies with the minimum
message length principle. Therefore, M is the shortest way of encoding m and
approaches Kolmogorov�s bound. We discuss approaches to the problem of
finding the best set of metasymbols using AI techniques.

1 Introduction

Information, in the classical theory, is defined as a function of the probability of
appearance of a symbol Si at one end of a communication channel. If the Si are
statistically independent, the information contained in a message is equal to the sum
of the information of every one of its symbols, which is intuitively satisfactory.
However, in spite of its simplicity, we must notice that we ignore the meaning of a
message and focus only in communicating it between a transmitter (tx) and a receiver
(rx) under the assumption that the universe of possible messages is known both to tx
and rx. This notion of information is a measure of one�s freedom when selecting a
message. Given the choice of sending the full contents of this paper or the phrase
�Let�s eat� the information concerned is, precisely, one bit.

Another intuitive way to look at the problem is to consider that the information in a
finite string is the number of bits of the shortest self-contained program that computes
the string and terminates. Thus, a long sequence of n 0�s (for n, say, equal to 10,000)
contains little information because a program of about log2(n) bits outputs it.
Furthermore, it can be shown that all reasonable choices of programming languages
lead to quantification of the amount of absolute information in individual objects that
is invariant up to an additive constant. We call this quantity the Kolmogorov
complexity (K-complexity) of the object. If an object contains regularities, then it has
a shorter description than itself. We call such object compressible. A consequence of

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 193-202

this is that a truly random sequence cannot be expressed in a shorter string than the
enumeration of its constituents and, conversely, that a string compressed to its utmost
is, for all practical purposes, random and that its length is a strict measure of its K-
complexity. This second fact leads us to conclude that an algorithm achieving highly
efficient compression will allow us to measure the K-complexity of an object; a fact
which has been overlooked in the past.

The crux of the matter lies in defining �highly efficient compression� (HEC). In
what follows we discuss a representation which provides an operative definition of
HEC. It relies on the discovery of the so-called metasymbols and their proper
selection. We have already proven that both problems are NP-complete and,
therefore, that their practical solution must depend on heuristics. We discuss a set of
algorithms which approach theoretical bounds and, therefore, offer a practical tool for
the calculation of K-complexity. In part 2 we discuss the representation, in part 3 we
discuss the algorithms, in part 4 we offer our conclusions.

2 Representation

Our method relies on the analysis of m in order to identify a set of the underlying
patterns (which we call metasymbols). In what follows we describe one possible
representation. In order to do this we must clearly define a metasymbol and the
associated concepts.

2.1 Definitions

Metasymbol (Ms). It is a collection of symbols which appears embedded in m. Its
symbols are not necessarily contiguous (they may show gaps). Its size (number of
symbols) is, in general, different from the sizes of other Ms. In general, we expect that
Msi appears more than once in m. The i-th copy of a Ms in m is called its i-th
instance.

Position of Msi. It is defined by the i-th offset (the number of symbols intervening
between the first symbol of Msi and the first symbol of Msi+1). By convention the
offset of the Ms1 is relative to the first symbol found in m. The position of all the
symbols in Msi is completely specified by these offsets. Since the structure of the Ms
is fixed, when we specify the offset of Ms we implicitly specify the position of all of
its symbols.

Gap. It is the number of unspecified symbols between two contiguous symbols in a
Ms. There may be S symbols (not necessarily different) in Msi; hence, there are S-1
gaps in it. By the structure of a Ms we mean the enumeration of its gaps.

Content of a metasymbol. It is the enumeration of the values of all the symbols in
the Ms. In general, m is not fully covered by all instances of the different Ms, i.e.
there are symbols which are not accounted for by a collection of Ms. The enumeration
of those symbols not covered in m is called the filler.

194 A. Kuri, O. Herrera, J. Galaviz, M. Ortiz

2.2 The Method

In general, the steps to express m as a collection of Ms [1] are: 1) Find an adequate set
of Ms, 2) Express m as a sequence of Ms, 3) Describe the position, structure and
contents of each of the Ms, 4) Describe the contents of the filler.

In what follows we illustrate the representation method with a hypothetical m
arranged in a 16X8 matrix (see figure 1). In m we may identify 5 metasymbols. The
first metasymbol (Ms1) consists of 12 symbols (see figure 2), and it appears 3 times.
The positions of its first symbol in the first, second and third instances are (1,1); (7,3)
and (9,4). To identify the position of the next instances of the Ms1 refer to figure 1.

Fig. 1. Message arranged in a 16X8 matrix

Fig. 2. First instance of Ms1

Ms2 consists of 8 symbols and it appears 2 times. Figure 3 shows its first instance
with initial position at (1,3). The second instance appears at (15,4).

Ms3 consists of 3 symbols and it appears 9 times. Its first instance is shown in
figure 4. Observe that its initial position is (15,1). For instances 2 to 9 their initial
positions are (2,2), (3,2), (6,2), (13,2), (8,3), (5,6), (6,6) and (14,6) respectively (refer
to figure 1).

Ms4 consists of 2 symbols and it appears 7 times. In figure 4 is shown its first
instance and its position at (4,1). For instances 2 to 7 its positions are (7,1), (9,1),
(16,1), (1,7), (9,7) and (16,7) respectively (refer to figure 1).

Ms5 consists of 3 symbols and it appears 2 times. Figure 4 shows its first instance
with positions at (15,6) and (3,7).

Fig. 3. First instance of Ms2

Fig. 4. First instances of Ms3, Ms4 and Ms5

The symbols of all instances of Msi, i=1, �, 5 account for 99 of the 128 symbols
in m (77.34%). The rest of the symbols follow no pattern and make up the filler.

For clarity, we assign the Greek letters α, β, γ, δ and ε to Ms1, ..., Ms5 respectively;
then m = α δ δ δ γ δ γ γ γ γ β α γ α β γ γ γ ε δ ε δ δ. However, without an explicit

Practical Estimation of Kolmogorov Complexity using Highly Efficient... 195

definition of the position, structure and contents of the various Ms the metasymbolic
expression of the message is meaningless. Therefore, we proceed as follows.

1) We describe the positions of the instances of the metasymbols. In the message
this corresponds to the sequence: 0 2 2 1 5 0 1 0 2 6 3 5 0 16 5 21 0 7 0 1 1 5 6. Every
number in the sequence represents the distance between the i-th and (i+1)-th Ms. In
m, Ms1 starts on the position of the first symbol (1,1); then the first instance of Ms4 is
two symbols away from Ms1. The second instance of Ms4 appears 2 symbols away
from its first instance. Likewise, the first instance of Ms3 is 5 symbols away from the
second instance of Ms4, and so on.

2) We define the structure of all the Ms as a sequence of gaps, one for every Ms.
Since the symbols are unknown, code �0� is reserved to indicate the end of the
structure of a Ms. The structure of Msi is, thus, a collection of gaps plus a �0�.
Furthermore, since it is possible to have a gap of size 0, every gap is encoded as its
actual size +1. As an example, the structure of Ms1 is specified by the sequence: 4 3 6
7 6 1 9 5 8 3 9 0. The gap between S1 and S2 is 3 (4-1), the gap between symbols S2
and S3 is 2 (3-1), and so on.

3) We proceed to define the contents of every metasymbol. The contents of the Ms
in m are defined as follows. Ms1: { MEVDEDNIMYHT} ; Ms2: {HDQSHDIL} ;
Ms3:{ RQK} ; Ms4:{ QA} ; Ms5 :{ HQG} .

At this point we have defined all necessary elements: order, position, structure and
contents, for every Ms in m. However, as stated, there are symbols which are not
accounted for by the collection of Ms defined. However, the exact positions of all
undefined symbols in m are, at this point, known.

4) We enumerate the contents of undefined localities to complete the cover. The
following sequence is the filler of m:{ SMTHFRKAQKFTHDIKKAEDKSKMEKHAK} .

Under this representation m�s K-complexity (K) is given by
K =)iNµ(1 ∑+ + ∑ iNω + ∑+ iS)(γ λ + ∑− iNiSλL

Where Ni denotes the number of instances of Msi; M = number of different Ms;
 (M)logµ 2= ; ω =  ]Msoffset [max.log i2 ; γ =  ]Ms gap [max.log i2 ; λ =  |Ms|log i2 ;

Si =  )Ms symbols (max. log i2 and L = | m | in bits.

3 Algorithms

In the preceding discussion we assumed that the Ms in m are known. As pointed out
in the introduction, such is not the case in general. In fact, the problem of finding the
Ms is NP-hard. In what follows we discuss two approaches to the solution. In 3.1 we
focus on an approach where Ms are determined on-line; in 3.2 we describe an
alternative where these are determined off-line. We have conducted statistical tests
which allow us to affirm that both methods approach the Ms set which leads to
maximum compression.

196 A. Kuri, O. Herrera, J. Galaviz, M. Ortiz

3.1 On-Line Search

MSIM is a tool for searching metasymbols based on Vasconcelos� Genetic Algorithm
(VGA)[2]. The VGA uses a population P of N individuals, a temporary population of
2N individuals, deterministic selection (from the best N individuals) and has two main
operators: mutation and crossover. Assuming a binary coding of the individuals,
mutation replaces a bit�s value by its complement with probability Pm. Crossover
requires two individuals and interchanges their genetic material with probability Pc.

The off-line algorithm (MSIM) models m as an array of symbols indexed from 0
to |m|-1. The individuals of MSIM are permutations of all the |m| indices of the
message which lie in the interval [0, |m|-1]. Each index is coded in traditional
weigthed binary and requires  Llog2 bits. We delimit the metasymbols of an
individual by reading the indices from left to right and looking for an ascending order.

As an example, in figure 5 we illustrate a possible individual for the hyptothetical
m �xyazbcdxyez�.

 0 1 3 2 4 5 6 9 7 8 10
 x y z a b c d e x y z
 Ms1 Ms2 Ms3

Fig. 5. An individual of VGA in MSIM

The relation between the first occurrence of a metasymbol and its repeated instances
is obtained by comparing the contents of the metasymbols as well as their gaps. In the
example of figure 1, Ms 3 is a repeated instance of Ms 1 because they match their
contents as well as their gaps. The other symbols make up the filler. The positions of
all the metasymbols can be determined from the positions of the first symbol of each
metasymbol. In genetic algorithm�s terminology, the measure of fitness for MSIM is
K which is to be minimized.

VGA�s mutation and crossover operations are not directly applicable in
manipulating the individuals of MSIM because they act on the genotype (binary
encoding) which may lead to invalid individuals (out of the feasible region), i.e.,
individuals with repeated indices or with indices out of the interval [0, |m|-1]. For this
reason we redefined the mutation and crossover operators to render them appropriate.

The mutation operator consists of a permutation of two indices whereas the
crossover corresponds to PMX [3]. Both of them retain the resulting individuals in
the feasible region. Figure 6 illustrates this two operators.

Mutation

A = 0 1 3 2 4 5 6 9 7 8 10

A�= 0 1 3 9 4 5 6 2 7 8 10

Crossover
A= 9 8 4 | 5 6 7 | 1 3 2 10
B= 8 7 1 | 2 3 10 | 9 5 4 6

A� = 9 8 4 | 2 3 10 | 1 6 5 7
B� = 8 10 1 | 5 6 7 | 9 2 4 3

Fig. 6. Mutation and crossover operator for MSIM

Practical Estimation of Kolmogorov Complexity using Highly Efficient... 197

MSIM�s representation is slightly different to the one described in section 2.2; it
encodes the position between the i-th and the j-th symbol corresponding to the next
repeated instance of the i-th metasymbol. Here we do not need to explicitly express
the sequences of the metasymbols since we can group the positions of the α�s, β�s,
γ�s, δ�s and ε�s, as shown in figure 7.

α δ δ δ γ δ γ γ γ γ β α γ α β γ γ γ ε δ ε δ δ

Fig. 7. Alternative coding of m

Hence, instead of the sequence of metasymbols we can indicate their positions as
follows:

α: 0, 11, 2; β: 10, 4; γ: 4, 2, 1, 1, 1, 3, 3, 1, 1; δ: 1, 1, 1, 2, 14, 2,1, 1; ε: 18, 2

The number of bits of the re-expressed m can be calculated by grouping the bits
required for each metasymbol, thus []∑ ∑−+++= iMiSλLiλ)S(γiNiψK'

where iψ is the number of bits required to encode the positions of all the instances of
the i-th Ms. The term of the first summation represents the number of bits required to
encode the i-th metasymbol and is denoted by Ai, then

 Ai = ii λ)S(γψN ++
The number of bits used by the symbols of the i-th Ms in m is Bi and is given by
 Bi = ii f|M|
Notice that, although we have derived two different expressions (K and K�) for

Kolmogorov complexity we have shown that, in practical applications, both are
equivalent [4]. In fact, there is an arbitrary number of possible representations and
they are all computationally equivalent. The latter is interesting in terms of MSIM�s
implementation.
We now define the discriminant di as

di =
i

i

B
A

Any value of di smaller than 1 implies that we may achieve m�s compression and it
does not depend on the rest of the Ms. Therefore, we can iteratively search for
metasymbols whenever we are able to find an associated di smaller than 1. Of course,
we are looking for Ms such that they minimize di. The Ms in the set are encoded as
individuals of MSIM and introduced to the population via a special operator called the
catastrophe operator. This operator corresponds, roughly, to forcing a large number
of mutations on the individuals, hence its name. It relies on the iterative search for Ms

198 A. Kuri, O. Herrera, J. Galaviz, M. Ortiz

with minimum di value and it will never submit individuals in which of K� is larger
than |m|.

3.2 Off-Line Search

In the previous section we have introduced a method that attempts to find an optimal
subset of patterns as the patterns are found. This on-line approach has the advantage
that the time used to determine a good subset of patterns, is amortized by the time
consumed in the pattern discovery procedure. But it has the disadvantage that some
good patterns can be disregarded. If, at some stage of the algorithm, the frequency and
order (number of defined symbols) of two patterns are alike then one of these will be
selected by the algorithm, while the other is dropped even if its potentiality could
emerge later in the process.

An alternative approach is to generate a set of frequent patterns without any
evaluation of its goodness, and then proceed to determine the best subset of patterns
to build the a posteriori dictionary. Evidently this approach is more expensive than
the previous one, but the risk that higher performance patterns will be ignored is
reduced.

The process implied in the implementation of this approach is divided in two
phases:

1. The search for frequent patterns. The result obtained at the end of this
phase is a set P of frequent patterns.

2. The search for a subset B ⊆ P (B is assumed as the dictionary or set of
metasymbols) such that the amount of bits required for the re-expression
of the m together with the dictionary is minimum.

Given the kind of patterns we are looking for in m, the problem related to phase 1
is very complex. All the algorithms reported have an exponential complexity on |m|
[5]. However if some restrictions are imposed on the frequency and order of the
patterns, there exist algorithms with better performance [6].

Concerning phase 2, we have proved that the search for an optimum subset of
patterns if it is adopted as the dictionary, is an NP-complete problem [7], therefore
heuristics are needed in order to approximate such subset.

The optimality of some pattern is given by its frequency and its order: the higher
the order and frequency, the better is the pattern. But there is a trade-off between
these two quantities. In one end we have that single symbols are patterns with highest
frequency and minimum order; on the other we have that the pattern encompassing m
has maximum order and minimum frequency. Hence, we need to find patterns which
maximize both quantities simultaneously. Therefore, we require a measure for pattern
quality including frequency and order.

The cost to include some pattern in a dictionary is better amortized if such pattern
appears frequently in m and there is a large amount of symbols covered by all these
appearances. Therefore, the product of pattern frequency and pattern order, (which we
call the pattern coverage), can roughly provide us with an estimate the pattern
contribution. However, it may happen that some symbols covered in one occurrence
of a pattern overlap with those covered in another. The amount of symbols covered at
least one time for a pattern is called the effective coverage, which is a more precise

Practical Estimation of Kolmogorov Complexity using Highly Efficient... 199

measure for the pattern�s quality. The concept of effective coverage, can be
generalized in the following way: given a set of patterns B, and a pattern p, the
exclusive coverage of p is the number of symbols in the sample covered at least one
time by all the occurrences of p, and not already covered by some other pattern in B.
This is the final criterion we use to evaluate the patterns.

The second phase of the procedure sketched above is, therefore, accomplished by a
heuristic based on the concept of exclusive coverage (which is why we have called it
the coverage-based heuristic). The output of this algorithm may be considered as a
proposed subset that could be further optimized by using some local optimization
procedure. This is attempted by two local optimizers which are, actually, two different
kinds of hill climbers that we will describe below.

The coverage-based heuristic proceeds as follows:

• Input: A set P of frequent patterns found in a sample S.
• Output: A subset D ⊆ P, assumed to be an approximation to the metasymbol

dictionary.
1. Let D = ∅ .
2. While the total coverage of patterns in D is less than | m | and P has patterns with

exclusive coverage, respect to D, greater than zero.
2.1. Chose the pattern p in P with the highest exclusive coverage respect to D.
2.2. Add p to D, and remove p from P.

3. Return D as the dictionary.

The resulting dictionary can now be optimized by local search procedures. We

have defined two of these mechanisms which are applied consecutively.
● Minimum Step Hill Climber (MSHC). Given the code of the subset of patterns (a

binary vector of size | P |, where 1 in the i-th position means that the i-th pattern of
P is included in the subset), the hill climber proceed to flip every bit in the vector.
Every change is evaluated and, if the size obtained with the change improves the
previous size, the changed code is the current subset.

● Minimum Replacement Hill Climber (MRHC). MRHC proceeds to exchange
systematically, the position of every bit with value 1 with every other position
whose value is 0.

Both of these climbers can be executed until no improvement is found or a fixed
number of evaluations have been performed.

4 Conclusions

We have shown that the best metasymbolic re-expression and further post-encoding
of message m yields the most compact representation of m. This is true provided that
we are able to find an adequate set of metasymbols in m. Furthermore, since this
process is lossless, the original information in m remains unaltered. The most
economic representation of m is possible only when enough information is provided
in order for the decoder to infer the structure, position and contents of the
metasymbols. A formalization of these facts may be found in the Invariance Theorem

200 A. Kuri, O. Herrera, J. Galaviz, M. Ortiz

which embodies (most of) the theoretical foundation of K-complexity. We now state
it without proof (but see [8]).

 There is a universal partial recursive function (prf) φ 0 for the class of prf�s to
compute x given y. Formally this says that Cφ 0(x|y) ≤ Cφ (x|y)+ cφ for all prf�s φ
and all x and y, where cφ is a constant depending on φ but not on x or y.

For the purposes of this paper this theorem says that we will be able to decode
message x from its metasymbolic representation y and that φ 0 is the prf (embodying
our method of representation) allowing us to do so. Usually K-complexity is defined
in terms of a Universal Turing Machine and its calculation is, in practice, very
difficult at best. Our representation and the related algorithms are a practical approach
which simply consists of finding those sets which minimize cφ and, therefore,
correspond to the smallest possible constant involved.

As discussed above, the computational cost of achieving such goal is justifiable as
long as high order compression methods (other than ours) are not found.

References
1. Kuri A, �Pattern based lossless data compression�, WSEAS Transactions on Communica-

tions, Issue 1, Vol. 3, 2004, pp. 22-29.
2. Kuri A, �Solution of Simultaneous Non-Linear Equations using Genetic Algorithms�,
 WSEAS Transactions on Systems, Issue 1, Vol. 2, 2003, pp. 44-51.
3. Goldberg, D., (1989), Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley Publishing Company.
4. Kuri A and Herrera O, �Efficient lossless data compression for nonergodic sources using
 advanced search operators and genetic algorithms�,Advances in Artificial Intelligence,
 Computing Science and Computer Engineering, Nazuno J, Gelbukh A, Yañez C, et. al.
 (editors), ISBN: 970-36-0194-4, ISSN: 1665-9899, Vol. 10, 2004, pp. 243-251.
5. Vilo, J., Pattern Discovery from Biosequences, PhD Thesis, Technical Report A-2002-3,

Department of Computer Science, University of Helsinki, 2002.
6. Rigoutsos, I. and A. Floratos, �Combinatorial Pattern Discovery in biological sequences:

The Teiresias Algorithm�, Bioinformatics, Vol. 14, No. 1, 1998, pp. 55-67.
7. Kuri, A. and J. Galaviz, �Pattern-based Data Compression�, in MICAI 2004: Advances in

Artificial Intelligence, Springer Verlag, Lecture Notes in Artificial Intelligence 2972, 2004,
pp. 1-10.

8. Li M and Vitányi P, An introduction to Kolmogorov complexity and its applications,
 Springer Verlag, New York, 2nd Ed, 1997.

Practical Estimation of Kolmogorov Complexity using Highly Efficient... 201

